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Abstract

I show that the current average rank bounds in the one-to-one two-sided matching

literature are loose in the limit, enough so that known comparative static results cannot

be recovered. I construct a motivating problem to demonstrate this looseness, modelled

after the result that there is some amount of increased competition that agents prefer to

choosing their optimal mechanism. These results are tied to the literature via discussion

about the size of the (asymptotic) core, as well as on the effects of competition.

1 Introduction

The analysis of rank distribution in stable matchings for one-to-one two-sided matching

markets has been a topic of interest in economics and operations research since the seminal

work of Gale and Shapley [1962]. There has been a pursuit since then to characterize the

average rank obtained by agents, which indicates how satisfactory the match is on average

for each side. This analysis is generally conducted in models with uniform preferences, and

this is the setup with which we are concerned.

A notable result within the literature has been that the fraction of agents who have

multiple partners across stable matchings tend to zero as n → ∞. This leads to an important

result: that the average rank of agents in the worst-case stable match and the best-case stable

match is the same in the limit. Bounds which can be derived from the literature, specifically

from Pittel [2019] and borrowing some results from Ashlagi et al. [2017], are broad enough

that this result cannot be easily identified. Using their bounds for total rank, we obtain

bounds for average rank which, while indeed well-defined, are loose in the limit. Thus to

find more analytically precise asymptotic bounds is still an open problem.
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I construct a motivating problem to demonstrate the insufficiency of the bounds, which

asks the following: in a very unbalanced market, how many agents have to be added to the

other side of the market to outweigh the benefits of securing the optimal match? The fact

about the small core in the limit implies that, with very high probability, the average rank

for the short side is going to be the same when proposing and accepting. If the average

rank is indeed the same, then there should be a finite number of agents that a social planner

could add to the long side of the market such that the average rank for the short side

improves, regardless of which mechanism is chosen. But I derive analytically that the present

bounds are loose enough that this result cannot be retrieved. I show via simulation that this

motivating problem does indeed have a positive and finite solution for a given market size.

The paper proceeds as follows: In Section 2, I review the literature. Section 3 contains

the derivation of the bounds for average rank. In Section 4 I simulate large unbalanced

markets and show that the difference between men’s average rank in men-proposing deferred

acceptance and women-proposing deferred acceptance (thus in the range of stable matchings)

as the market grows large goes to zero. In Section 5 I show any analytic solution to the

motivating problem must be negative, and simulate to show that the analytic solution should

indeed be positive and finite. Section 6 concludes, and the appendix contains the proof for

the key proposition in Section 5.

2 Literature Review

To the best of my knowledge, Pittel [2019] contains the most recent and robust analysis of

average rank in large unbalanced two-sided matching markets. He provided the probability

with which total rank falls within a given interval; in the following section, I acquire bounds

for average rank, additionally using results from the asymptotic analysis of Ashlagi et al.

[2017]. Of note is that the results of Pittel [2019] are agreeable with recent findings in

Nikzad [2022], which deployed graph theory to show that the average rank for men in the

men-optimal stable matching is bounded from above by a constant.

There is some relation to the literature on the size of the core in the limit. A notable

finding in matching theory has been that the size of the core—analogous to the number of

unique stable matchings—shrinks as the markets grow more unbalanced. This implies the

fraction of agents who have multiple unique partners within a stable matching goes to zero,

and thus there is zero benefit of proposing into the limit. The first result about the core was

found by Pittel [1989] and Knuth et al. [1990], who showed that the fraction of agents in

balanced markets with multiple stable partners approaches one as n grows large. Immorlica

and Mahdian [2005] showed that in sufficiently large markets there is essentially one unique
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stable matching in the limit, and that truth-telling dominates for both sides. Kojima and

Pathak [2009] found an analogue for the same result, but in many-to-one, sufficiently thick

markets. Later, Ashlagi et al. [2017] showed that even adding one agent to just one side of

a balanced market can make the core collapse.

There has also been research on the different model conditions that lead to the same

small-core result. For example, Roth and Peranson [1999] showed that a limited acceptability

assumption (where some agents deem some number of agents unacceptable, and which none

of Pittel [2019], Ashlagi et al. [2017], or I impose), also generates the result, that the fraction

of people with multiple stable partners tends to zero as the market grows large. Liu and

Pycia [2016] proved that regular mechanisms that are asymptotically efficient, symmetric,

and strategyproof are asymptotically equivalent, so the choice of mechanism is actually not as

relevant to improving outcomes. Lee [2016] showed that agents cannot profitably manipulate

the mechanism even when preferences have a common-value component. Knuth [1996], one

of the first to consider the notion of average rank in two-sided matching markets, deployed

uniform preferences. Holzman and Samet [2014], for example, demonstrated how common

values lead to assortative matching, thus the average rank is intuitive from the size of the

market (and also has a small core).

I generate the motivating problem as an extension of results from Crawford [1991] (an

analogue to which was available in Kelso and Crawford [1982]), and in the auctions setting of

Bulow and Klemperer [1996]. Crawford [1991] proved that adding women to the other side

of the market weakly improves the men-optimal stable matching for all men. Later, Bulow

and Klemperer [1996] showed that, in a setting of private values, expected revenue from

an absolute English auction with n + 1 bidders exceeds expected revenue from an English

auction with n bidders followed by a take-it-or-leave-it offer to the last remaining bidder.

3 Theoretical Results

Let Mn1,n2 be the set of stable matchings for a market with size n1 men and n2 women where

n1 < n2. For any matching Mn1,n2 ∈ Mn1,n2 , let Q(Mn1,n2) be the total rank of men for their

partners. When the size of the market is clear, let M and M be shorthand respectively for

Mn1,n2 and Mn1,n2 . Define n as the vector (n1, n2) and s(n) := log n2

n2−n1
, and consider that

s(n) is bounded.1 Note that lower rank is preferred.

The notion of a concentration point is useful for determining the interval in which a value

1We note this because the interested reader may visit Pittel [2019] and note there are two cases: one
where s(n) is bounded, and another where s(n) is unbounded. The unbounded case does not apply in very
large markets; note that as n2 → ∞, the denominator sends the logarithm to zero.
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is expected to lie.

Definition 1. The concentration point qα for total rank is defined as the smallest q such

that P(|Q(M)− qα| ≤ δ) ≥ α for all matchings M ∈ M for some positive δ.

From Pittel [2019] we get bounds on qα for men’s total rank Q(M).

Theorem 1 (Pittel [2019]). For n2 > n1 and n1 sufficiently large,

P

(
max
M

∣∣∣∣Q(M)

n2s(n)
− 1

∣∣∣∣ ≥ δ(n)

)
≤ P(n) (1)

where s(n) = log n2

n2−n1
, δ(n) := n−a

1 ,P(n) := exp
(
−n1−2a

1

)
for some a < 1

2
.

I rearrange this statement to describe the concentration point around average rank.

Lemma 1. The concentration point around the average rank is described by

P

(
max
M

∣∣∣∣Q (M)

n1

− n2

n1

s (n)

∣∣∣∣ ≥ n2

n1

δ (n) s (n)

)
≤ P (n) (2)

for n2 > n1 and n1 sufficiently large, and where s(n) = log n2

n2−n1
, δ(n) = n−a

1 ,P(n) =

exp
(
−n1−2a

1

)
for some a < 1

2
.

The upper bound of the implied distribution corresponds to the worst-case ranking for

men (as in women-proposing deferred acceptance, henceforth “WPDA”) and the lower bound

corresponds to the best-case ranking (as in men-proposing deferred acceptance, henceforth

“MPDA”). From this concentration point, I construct bounds for average rank, which re-

quires leveraging additional results from Ashlagi et al. [2017] for the upper-bound average

rank.

Proposition 1. The expectation of the lower bound for average rank in a market with n1

agents on the shorter side and n2 agents on the longer side is

E
Q(Mn1,n2)

n1

≥ (1− P(n))

(
n2

n1

s(n)− n2

n1

δ(n)s(n)

)
+ P(n)1

where s(n) = log n2

n2−n1
, δ(n) = n−a

1 ,P(n) = exp
(
−n1−2a

1

)
, and for some a < 1

2
.

Proof. Begin with the concentration point bound from Pittel [2019]:

P

(
max
M

∣∣∣∣Q(M)

n2s(n)
− 1

∣∣∣∣ ≥ δ(n)

)
≤ P(n).
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With probability P(n) it holds that maxM

∣∣∣ Q(M)
n2s(n)

− 1
∣∣∣ ≥ δ(n). Multiplying through by s(n)

within P(·), I arrive at the normalized total men rank:

P

(
max
M

∣∣∣∣Q(M)

n2

− s(n)

∣∣∣∣ ≥ δ(n)s(n)

)
≤ P(n).

So for at least 1 − P(n) ratio of preference profiles, the normalized total men rank Q(M)
n2

is within δ(n)s(n) of s(n). Further manipulation (dividing through by n1 and removing

normalization) generates the inequality

P

(
max
M

∣∣∣∣Q(M)

n1

− n2

n1

s(n)

∣∣∣∣ ≥ n2

n1

δ(n)s(n)

)
≤ P(n).

This means that for at least 1−P(n) ratio of preference profiles, the unscaled average men

rank Q(M)
n1

is within n2

n1
δ(n)s(n) of n2

n1
s(n) = n2

n1
log n2

n2−n1
. So, for 1 − P(n) of preference

profiles, Q(M)
n1

≤ n2

n1
δ(n)s(n) + n2

n1
s(n). For P(n) of preference profiles we can merely assert

that Q(M)
n1

≥ 1, hence our bound from below is

E
Q(M)

n1

≥ (1− P(n))

(
n2

n1

s(n)− n2

n1

δ(n)s(n)

)
+ P(n)1.

For the upper bound of the average rank I leverage the following result from Ashlagi

et al. [2017].

Theorem 2 (Ashlagi et al. [2017]). Let K = λn1 and λ > 0 be any positive constant.

Consider a sequence of random matching markets with n1 men and (1+λ)n1 women. Define

the constant κ = 1.01(1+λ) log(1+1/λ). With high probability, in every stable matching, the

average rank of wives is at most κ, the average rank of husbands is at least n1/(1 + κ), and

the fractions of men and women who have multiple stable partners converge to 0 as n1 → ∞.

Proposition 2. Let n2 = λn1 and λ > 0 be any positive constant. The expectation of the

upper bound for average rank in a market with n1 agents on the shorter side and n2 agents

on the longer side is

E
Q(Mn1,K)

n1

≤ (1− P(n))

(
n2

n1

s (n) +
n2

n1

δ (n) s (n)

)
+ P (n) (1.01(1 + λ) log(1 + 1/λ))

where s(n) = log n2

n2−n1
, δ(n) = n−a

1 ,P(n) = exp
(
−n1−2a

1

)
, and for some a < 1

2
.
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The derivation is equivalent to the above except the worst-case average rank is bounded

from above by the constant κ = 1.01(1 + λ) log(1 + 1/λ).

In Figure 1, I plot the average rank, as well as the upper and lower bounds, for a given

a value. Note the high-probability event and low-probability event constitute a bounded

area. Recognize in most cases that, because of the small probability of P (n), average rank

coincides with the higher probability event.

(a) Upper Bound for a = 0.01 (b) Lower Bound for a = 0.01

(c) Upper Bound for a = 0.25 (d) Lower Bound for a = 0.25

(e) Upper Bound for a = 0.50 (f) Lower Bound for a = 0.50

Figure 1: Upper and Lower Bounds of Theoretical Average Rank

If the bounds were sufficiently tight, the gap between the inequalities in the above propo-

sitions would be quite small, so long as n2 > n1. But that is not upheld. Consider alone

the “high” probability event, that is the term in each bound with the coefficient (1−P(n)).

The gap between the upper bound and lower bound instance is(
n2

n1

s (n) +
n2

n1

δ (n)

)
−
(
n2

n1

s(n)− n2

n1

δ(n)s(n)

)
= 2

n2

n1+a
1

which is obviously unbounded as n2 → ∞.
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4 Simulations

In the investigation of large unbalanced matching markets, I employ a computational ap-

proach to examine the difference in average rank outcomes of participants.

I run simulations for a given market instance where the number of men is strictly less

than the number of women. Each participant possesses a preference ordering independently

and identically drawn over the members of the opposite side, with no ties in preferences.

Specifically, a permutation of the set {0, 1, 2, ..., n − 1} is generated for each participant,

where n is the count of agents on the opposite side. The deferred acceptance algorithm that

generates a stable matching is shown in Algorithm 1.

Algorithm 1 Deferred Acceptance Algorithm

Require: Proposing preferences matrix P , Accepting preferences matrix A
Ensure: Matching M
1: Initialize all proposers and acceptees as unmatched
2: Create empty proposal lists for all acceptees
3: while there exists an unmatched proposer p with a non-empty preference list do
4: Let a be the highest-ranked acceptee in p’s preference list
5: Remove a from p’s preference list
6: if a is unmatched then
7: Match p with a
8: else if a prefers p to her current match p′ then
9: Unmatch p′ from a
10: Match p with a
11: end if
12: end while
13: return Matching M

The algorithm converges to a stable matching where no pair of participants could mutu-

ally benefit from deviating from their current match (there is no “blocking pair”). The focal

outcome metric is the average rank of the partners to whom participants are matched. The

script generates a market instance and preferences, runs MPDA and WPDA, and computes

average rank for each. Averages are calculated across 50 unique market instances. I plot the

average rank for men in MPDA and WPDA in Figure 2.

Figure 3 contains the difference in average rank across best- and worst-case stable match-

ings for a given market arrangement. From the figure it is clear that MPDA weakly dominates

WPDA. Note when comparing difference in rank that there is a fair number of simulations

for which the average rank difference is close to zero. This implies that the utility difference

between the best-case and worst-case stable matching is marginal (if not zero) and thus that

there is a unique stable matching for most market arrangements. The gap approaches zero
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Figure 2: Simulated average rank for men in MPDA and WPDA

as market grows more unbalanced.

5 Motivating Problem

I now discuss the motivating problem, which takes inspiration from Crawford [1991] and

Bulow and Klemperer [1996]. I seek the following: what number of agents have to be added

to the long side of the market to make the average rank from that new market certainly

lower than the average rank from proposing? I first discuss how the bounds constructed

from Pittel [2019] and Ashlagi et al. [2017] imply a negative solution, and include a proof in

the appendix. I then use simulations to show that a positive, finite solution does exist, and

that the derived bounds are indeed too loose.

Numerically, I seek the value k for which the upper bound of
Q(Mn1,K

)

n1
is less than the

lower bound of
Q(Mn1,n2 )

n1
. Because, in practice, we know the fraction of agents who have

multiple stable partners goes to 0 as n → ∞, we expect the gap between these bounds to go

to zero.

Proposition 3. Using the bounds from Pittel [2019] and Ashlagi et al. [2017], there is no

positive k = K − n2 for which the following inequality holds:

E
Q(Mn1,K)

n1

≤ E
Q(Mn1,n2)

n1

.

A positive solution to this would give the number of agents who have to be added to the

larger side of the market for the smaller side to benefit equally from simply proposing in the
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Figure 3: Difference between simulated average rank for men in MPDA and WPDA

original market. Note that this is solving the following:

(1− P(nK))

(
K

n1

s (nK) +
K

n1

δ (nK) s (nK)

)
+ P (nK) (1.01(1 + λ) log(1 + 1/λ)) (3)

≤ (1− P(n))

(
n2

n1

s(n)− n2

n1

δ(n)s(n)

)
+ P(n)1 (4)

where s(n) = log n2

n2−n1
, δ(n) = n−a

1 ,P(n) = exp
(
−n1−2a

1

)
, and for some a < 1

2
. The proof

is in the appendix.

The fact that no positive number exists is contrary to expectation. If the bounds were

sufficiently tight, the shaded area between the bounds as is seen in Figure 1 could be viewed

analogously to the size of the core, which should vanish in the limit. Indeed, these bounds

would suppose a range of stable matchings. But the looseness of the bounds means this

result cannot be recovered. I now show in simulation that there is a finite number of agents

that can be added to other side of the market to outweigh the benefits of proposing.

Contradiction from simulation

In simulation the motivating problem does have a finite, positive solution for a given market

size. This follows intuition: given there is, with very high probability, a unique stable match-

ing in large unbalanced matching markets, securing proposal rites should make essentially

zero difference on the average rank, and so, given average rank is normalized and preferences
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are regenerated for a given market size, the average rank rank should weakly improve as the

number of women increases.

I show the number of agents that have to be added to outweigh proposing effects in Figure

4, for market sizes up to 100. Figure 5 shows the same but normalized for the original length

of the long side, thus each cell corresponds to a fraction of the long side of the market that

flips the inequality.

Figure 4: The additional number of
women needed to outweigh the benefits
of proposing.

Figure 5: The additional number of
women needed to outweigh the benefits
of proposing, normalized to the number
of women.

6 Conclusion

This paper revisits the problem of rank distribution in stable matchings for one-to-one two-

sided matching markets, a topic of enduring interest since the foundational work of Gale

and Shapley. I focus on the implications of recent analytical bounds for large markets,

particularly those presented by Pittel [2019], and show that these bounds are loose in the

limit.

To illustrate this, I introduce a motivating problem that seeks to quantify the number of

agents that must be added to the longer side of the market to make the benefit of increased

competition outweigh the benefit of securing the optimal match. My analytical results show

that no such number exists under the current bounds, thereby highlighting the limitations

of existing analytical tools for studying this problem.
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Appendix

Proof of Proposition 3. I follow Ashlagi et al. [2017] and recognize that with K = λn1, an

unbounded long side implies λ → ∞. Taking the limit using L’Hopital’s rule we see that as

λ → ∞,

e−θ(n1−2a
1 )(1.01(1 + λ) log(1 + 1/λ)) → 0.

Now I focus on the first term on each side of the inequality, thus I intend to simplify

(1− e−θ(n1−2a
1 ))

(
K

n1

n1

K − n1

+
K

n1

δ (nK)
n1

K − n1

)
≤ (5)

(1− e−θ(n1−2a
1 ))

(
n2

n1

n1

n2 − n1

− n2

n1

δ(n)
n1

n2 − n1

)
. (6)

Eliminating terms and recognizing that n1 cancels everywhere:(
K

K − n1

+ δ (nK)
K

K − n1

)
≤

(
n2

n2 − n1

− δ(n)
n2

n2 − n1

)
.

Multiplying both sides by (K − n1) and plugging in for δ(·) gives

K + n−a
1 K ≤ n2(K − n1)

n2 − n1

− n−a
1

n2(K − n1)

n2 − n1

.

Factoring out and isolating K gives

K ≤ n2

n2 − n1

(1− n−a
1 )

(1 + n−a
1 )

(K − n1).

It is useful to define Z := n2

n2−n1

(1−n−a
1 )

(1+n−a
1 )

, giving

K(1− Z) ≤ −n1Z,

so

K ≤ −n1Z

1− Z
.
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Recall we are seeking k = K − n2, which defines defines the number of agents that have

to be added to the long side of the market for the benefit of increased competition on the

short side of the market to outweigh the benefits of proposing. It is already immediate that

k = K − n2 is negative; nonetheless plugging back in for Z in the above gives

K ≤
−n1

n2

n2−n1

(1−n−a
1 )

(1+n−a
1 )

1− n2

n2−n1

(1−n−a
1 )

(1+n−a
1 )

,

so

k ≤
−n1

n2

n2−n1

(1−n−a
1 )

(1+n−a
1 )

1− n2

n2−n1

(1−n−a
1 )

(1+n−a
1 )

− n2.

But k < 0 for all values n1 and n2 such that n1 < n2.

References

I. Ashlagi, Y. Kanoria, and J. Leshno. Unbalanced random matching markets: The stark

effect of competition. Journal of Political Economy, 2017.

J. Bulow and P. Klemperer. Auctions versus negotiations. The American Economic Review,

86(1):180–194, 1996.

V. P. Crawford. Comparative statics in matching markets. Journal of Economic Theory, 54

(2):389–400, 1991.

D. Gale and L. Shapley. College admissions and the stability of marriage. American Math-

ematical Monthly, 1962.

R. Holzman and D. Samet. Matching of like rank and the size of the core in the marriage

problem. Games and Economic Behavior, 88:277–285, 2014.

N. Immorlica and M. Mahdian. Marriage, honesty, and stability. In Proceedings of the

Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 53–62, 2005.

A. S. Kelso and V. P. Crawford. Job matching, coalition formation, and gross substitutes.

Econometrica, 50(6):1483–1504, 1982.

12



D. E. Knuth. An exact analysis of stable allocation. Journal of Algorithms, 20(2):431–442,

1996.

D. E. Knuth, R. Motwani, and B. Pittel. Stable husbands. Random Structures & Algorithms,

1(1):1–14, 1990.

F. Kojima and P. A. Pathak. Incentives and stability in large two-sided matching markets.

American Economic Review, 99(3):608–27, June 2009.

S. Lee. Incentive Compatibility of Large Centralized Matching Markets. The Review of

Economic Studies, 84(1):444–463, 09 2016.

Q. Liu and M. Pycia. Ordinal efficiency, fairness, and incentives in large markets. 09 2016.

A. Nikzad. Rank-optimal assignments in uniform markets. Theoretical Economics, 17:25–55,

2022.

B. Pittel. The average number of stable matchings. SIAM Journal on Discrete Mathematics,

1989.

B. Pittel. On likely solutions of the stable matching problem with unequal numbers of men

and women. Mathematics of Operations Research, 2019.

A. E. Roth and E. Peranson. The redesign of the matching market for american physicians:

Some engineering aspects of economic design. American Economic Review, 89(4):748–780,

September 1999.

13


